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Abstract

The free energy of a hydrogen-helium fluid mixture is evaluated for the

temperatures and densities appropriate to the deep interior of a giant planet

such as Jupiter. The electrons are assumed to be fully pressure-ionized

and degenerate. In this regime, an appropriate first approximation to the

ionic distribution functions can be found by assuming hard sphere inter-

actions. Corrections to this approximation are incorporated by means of

the perturbation theory of Anderson and Chandler. Approximations for the

three-body interactions and the non-linear response of the electron gas to

the ions are included. We predict that a hydrogen-helium mixture, containing

10% by number of helium ions, separates into hydrogen-rich and helium-rich

phases below about 80000 K, at the pressures relevant to Jupiter (4-40

Megabars). We also predict that the alloy occupies less volume per ion

than the separated phases. The equation of state and other thermodynamic

derivatives are tabulated. The implications of these results are mentioned.

- 1 -



Introduction

The mass and radius of a giant planet such as Jupiter can only be explained

by assuming that the main constituent is hydrogen.1 This suggests that Jupiter

may have roughly solar composition so that about one atom in ten is helium. More-

over, Jupiter emits about twice as much radiation as it receives from the sun.

This indicates an internal heat source and is consistent with a temperature in the

deep interior that exceeds the melting point of metallic hydrogen or helium.1 It

has also been suggested that the helium may have only limited solubility in the

hydrogen.3 '4  Clearly, detailed models of the giant planets require an understanding

of the thermodynamics and phase diagram of dense hydrogen-helium fluids. In this

paper, the relevant properties of such a system are calculated. We assume that all

the electrons are pressure-ionised, although our calculations have at least approxi-

mate validity at the lower pressure relevant to Jupiter.

The only previous relevant calculations are the incomplete Monte Carlo studies

by Hubbard.5 '6 The lengthy computational time of those calculations is avoided

here by choosing an appropriate trial solution for the ionic distribution functions

and then using a perturbation theory (the optimised random phase approximation of

Anderson and Chandler ) to closely approximate the real ionic distribution. At the

densities and temperatures of interest (1 p 4 10 g/cm 3, 103  T < 5 x 104 o K),

the ion-ion interaction (in the presence of screening electrons) is characterized

by a repulsive core and a weak long-range part, 8 so the appropriate trial solutions

are the distribution functions for hard spheres. At higher densities or temperatures,

a different approximation scheme (or the Monte Carlo method) is more appropriate.

Our calculation contains features not present in Hubbard's calculations. We

have used a more realistic dielectric function, and corrections have been made for

the quantum mechanics of the ions, the three body interactions, the non-linear

response of the electron gas to the ions, and finite temperature corrections to the
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electron gas. Some of the thermodynamic properties are significantly affected by

these corrections. Nevertheless, our results are similar to those of Hubbard in

most instances. We do make an important new prediction: the existence of a

miscibility gap in the hydrogen-helium alloy. We also predict that there is a

small but non-negligible volume non-additivity (i.e. the alloy occupies less volume

per ion than the separated phases). The detailed astrophysical implications will

be discussed elsewhere; they are only briefly mentioned in the present paper.

In Section II, the free energy calculation is described. In Section III, the

thermodynamic properties are discussed. In Section IV, the phase separation is

described and in Section V, the validity of our calculation is assessed.



II. The Free Energy

Consider a binary system in which a fraction x of the nuclei have charge Z = 2,

and a fraction 1 - x have charge Z = 1. The compensating electron gas has an

4 3 3 -1average density Z*N = ( 3 rsao ) where N is the ion number density, the effective

-8
valence is Z* = 1 + x, ao = 0.529 x 10 cm, and rs is the electron spacing parameter

(rs - 1 in Jupiter). The free energy is written as

F = Feg + Fhs + EM + EBS + AFint + FQ (1)

We now discuss the meaning and evaluation of each term.

The free energy of a uniform electron gas, Feg , can be expressed as the sum

of a zero temperature contribution and a small finite temperature correction since

we assume

6 x 10
T < < 2 OK = TF (2)

r
s

where T and TF are the actual and Fermi temperatures, respectively. The zero

temperature contribution is

E = (2.21/r - 0.916/r - 0.115 + 0.031 Bar )Z* Ryd/ion (3)
eg s s s

where an interpolation approximation has been used for the correlation energy.9

(Any small inaccuracy in the correlation energy has negligible effect on the final

results). The only finite temperature correction that we have retained is the

kinetic energy term10

2, 2/3
AFeg = - 2 ( ) r2s (k T) yd Z* Ryd/ion (4)

where kBT is in Rydbergs (kB = 6.34 x 10- 6 Ryd/*K). The other corrections can be

shown to be negligible at the temperatures of interest. 1 1

As a first approximation, we assume that the ions, with their comoving screening

clouds of electrons, interact like hard spheres. Consequently, we have, in addition

to electrostatic energy contributions, the free energy, Fhs, of an equivalent neutral

hard sphere liquid. 12
hard sphere liquid. This has been approximately calculated by Mansoori et al.

4-'
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Fhs = Fig + kBT {- 2 (1 - Yl + Y 2 + Y 3 ) + (3Y 2 + 
2 y 3 )/(1 - r)

3 1 2
+(1 - Y1  2 3 y 3 )/(1- 1) + (Y 3 -1) an (1 - 1)

,M2kBT. 3/2] " 1 MlkBT. 3./2]
Fig =- kBTtl + I B T 3/2) + (1 - x) Sn ( - x)N 3/2 (5)

where yl = x(l - x)(l - a)2(1 + a)/d

Y2 = x(l - x)a(l - a) 2[(1 - x)a 2 + x]/d 2

y3 
= [(1 - x)a2 + x]3/d

2

d = (I - x)a3 + x

volume occupied by hard spheres

total volume

diameter of hydrogen hard spheres

diameter of helium hard spheres

and MI, M2 are the hydrogen and helium ionic masses respectively. Fig is the free

energy of an ideal gas mixture. (A hard sphere mixture deviates from an ideal gas

to the-extent that Tj is non-zero). -For rl ? 0.45, a classical liquid is expected

13
to solidify. The predictions of equation (5) are almost indistinguishable from

hard sphere Monte Carlo calculations, in contrast to the alternative formula of

14
Lebowitz. The parameters rT and a are not known in advance and are to be determined

variationally.

We next evaluate the Madelung energy EM, which is the electrostatic energy of

point ions immersed in a uniform electron gas.

2 Z.Z
E = 2N . - 2NZ* Zi  ir'E Ir rI' - | -r l

nm "n . m m " ~

+ N2 2 dt d' > (6)

where the integrals extend over the entire volume Q and (...) denotes an ensemble

average. In (6), r refers to a nucleus of charge Zi at position rn. It can then
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be shown that

EM = (1 -x)Z[S 11  - 1] + 2Z1Z2x (1 - x) 12
k#0

2 2

+Z 2 x[S2 2 (k - 1~ (7)

(Z 1 = 1, Z2 = 2 for H-He), where the partial structure factors S i(k) are defined as

1 i

(N iNj) n,m

- (NNj)4 0 6,O (8)

and N.,N. are the partial number densities of the two ionic species. We approximate

15
S.. by the Percus-Yevick hard sphere result found by Ashcroft and Langreth. Ross

and Seale 16 have shown that in this approximation, the summation in (7) can be

evaluated exactly. We give the rather complicated result here because of an error

in their paper:

-3 2 / 3  [ 2Z (1 - x) 2G1 + 2(1 +) 2ZZ 2x(l - x)G2
EM 5[(1 + x)d2 ]1 /3rs(l (1 + 2) 1

+ Z2x G22G Ryd/ion (9)

2 10 2 2
G1 [21 - 2'01 + 10 - 4112 + 1012 + (2 - 212 41 2 /a2]

1
G2 = 15(1T2 - 11)( - 1)2a/(l + a) - 30(1 + 1)

+ (2a./l + a) [2 1 - 211i + 10 - 411112 + 2012 + 10(1l2 + T1 + 2)/a

+ (12 - 212 + 10 - 41112 + 20 li)/a 2]

11 = (1 - x)a 31/d, 12 = xT/d

1
and G22 is obtained from G11 by replacing - by a and 11 by 112. Corrections to the

hard sphere approximation are contained in AFint, discussed below.

We next consider the "band structure" energy EBS , resulting from the non-
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uniformity of the electron gas. In general, it is possible to expand Pind'k),

the Fourier transform of the electron density change induced by the ions of species

17-19
i, in powers of the electron-ion interaction

i ' i(n)
Pind k ) = ind

n= 1

S (k)vi(k)p o n (k) X2 (k, )i(k + )p on + V (-Pion(-

e =1,2 q

+ higher order (10)

Sik.ri
where pi (k = e

ion Q =

m

8rrZ. 3
and V( = Ryd - a0  (11)

k

We have retained terms up to third order in the electron-ion interaction, so

that EBS E (2)+ E ( 3 ) where

E(n) 1P i(n-l)(k)V (-k)pj (-k) (12)
nN ind ion

kO0 i,j=1,2

Note that in equations (7) and (12), the zeroth Fourier components are omitted

from the summation since they are exactly compensated by the divergent electron-

electron interaction energy.

i 17,20
The lowest order term in p nd(k) is the linear response result

i(l) k 1 Vi(k) (k(13)
ind () e(k) ion

where e(k) is the static dielectric function. In our calculations, the Hubbard

approximation has been used.20 This is a more realistic form for the linear response

than the Lindhard expression used in the Monte Carlo studies 5'6 . Corrections for

21
the dynamic response of the electron gas appear to be negligible and have not

been included.

I-
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From the definitions of the partial structure factors, it can then be shown

that2 2

E(2) 2(1 - x)S1 1 (k) + 2Z 1 Z2 x - x)S 1 2 (k) + Z2xS22

x i - l)dk Ryd/ion (14)

where k is in units of a- 1 . This contribution is evaluated numerically using the
0

hard sphere structure factors.

The theory for E( 3 ) is not given in detail here, since it is an obvious

17-19
generalization of the results for crystalline metals 7  . (For example, the only

change to equation 4.8 of Lloyd and Sholl17 is the insertion of ensemble averages.)

The appropriate generalization of equation (90) of Hammerberg and Ashcroftl9 is

E(3) 16 4\ 1/3

E ) = rs ddWi() wJ- 1)Wk1 ) H ( 3 ) (~ )Tijk ' I

Si,j,k 
(15)

=1,2

1~ i2k -r m + i)  + r k

where Tijk(q'Jl) = e F + ~ n p) (16)

m,n,p

Wi 2= 2k , kF is the Fermi wavevector, and H( 3 ) is the three-

vertex function defined by Hammerberg and Ashcroft. Since m,n,p do not have to be

different in the summation for T.. k it is clear that E ( 3 ) contains not only
ijk

three-body interactions, but also corrections to two body interactions and (structure

independent) corrections to the screening of single ions. The evaluation of Tijk

can only be approximate since there is no accurate theory for three-body correlation

functions. We have chosen a convolution approximation (see Appendix I).

We have not evaluated the fourth order contribution to the band structure

energy, but some semi-quantitative assertions can be made. First, it is clear from

the work of Hammerberg and Ashcroftl9 that there are additional complications at

fourth order that can only be encompassed by the use of finite temperature perturba-
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tion theory. Second, their formal results can be easily extended to liquids and

liquid mixtures. In particular, the terms which they ascribe to the non-sphericity

of the Fermi surface in the solid, are non-zero (and comparable in magnitude) in

the liquid phase. It seems that the substantial cancellation of fourth order terms

that they found for crystalline metallic hydrogen, persists in the liquid. The

cancellation is also substantial for helium, since the dominant fourth order con-

tributions have similar Z dependence. Thus, it is hoped that our omission of E(4 )

is not a serious deficiency.

In the above calculations, we have used an effective ion-ion interaction, the

accuracy of which is limited only by uncertainties in the dielectric function of

the electron gas. We have not, however, evaluated the ionic configuration appropriate

to that interaction. This is corrected by the optimised random phase approximation

method of Andersen and Chandler(see Appendix II). To second order in the electron-

ion interaction,

AFint 1B-3N J n det I + NS /kBT - NTr' /kT dk (17)
int 163N L B

where "det" means determinant, "Tr" means trace, I is the unit 2 x 2 matrix; and

s, ' are the 2 x 2 matrices, the elements of which are

iji Sij(

=ij 
= (xixl ) iP (k) (18)

where xi, xj are the number fractions of ion species i and j; and 'ij (k) is the

Fourier transform of the optimised potential U.. (r), given by

U.ij(r)= - k TCij(r) r < Rij

Seff(r) R.. (19)ij r ij

eff
where R.. is the minimum hard sphere separation and vii (r) is the effective ion-ion

interaction, the Fourier transform of which is 4rre2/k 2 (k). The functions C i(r)

are chosen variationally
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int6AF t 0, r < Rij 
(20)

8Ci (r)

A quadratic function of r was found to be adequate for approximating each C. .(r).

Finally, we have included the lowest order high temperature quantum correction

h2N X I 1' 2 eff
F = 2  ij(r) v.. (r)dr (21)Q 24kBT M.. ijj

i,j=1,2 13

. 1 1
M M M.
ij " . j

where gij(r) is the pair correlation function for ion species i and j, and M i is

the mass of ion species i. This result was first derived by Wigner2 3 and is the

effect of including the uncertainty principle for the ions, to lowest order in

h 2 /Ma2 k T. Unlike FQ, the next term in the Wigner expansion depends on whether0oB

the ions are bosons or fermions, but it can be shown to be negligible (N 10-3 Ryd)

for our present purposes.

-3/2
Notice that FQ does not scale as r , the result that one might expect for

Q --

zero-point motion.2 4 The Wigner expansion is rapidly convergent provided

2
< < 1 

(22)

Mc2kBT

where a is roughly the range of the strongly repulsive part of the effective inter-

action. Detailed calculations indicate r T ; 1500*K is a sufficient condition for

FQ to represent accurately the quantum correction.



III. Thermodynamic Properties

The free energy given by equation (1) was evaluated as a function of density,

temperature and relative concentration. The procedure is to minimize Fhs + EM

+ E( 2 ) + E( 3 ) + F as a function of T and a. (The best choice for a is found to

be insensitive to all other parameters and varied between 0.73 and 0.77 only). The

remaining contributions to F are then added. Since nF effectively corrects theint
hard sphere approximation, to second order in the electron-ion interaction, the

minimization procedure would be unnecessary, were it not for E( 3 )  If E( 3 ) is

excluded, then the total F is indeed very weakly dependent on rT and a and this

encourages confidence in our calculation. The minimization procedure is justified

by a result of thermodynamic perturbation theory which states that the exact free

energy is bounded above by the free energy calculated using the hard sphere model.2 5

Rather than tabulate F, we have tabulated various derivatives that are par-

ticularly useful in constructing planetary models(see Tables I-III). Note that

the heat capacity per nucleus, at constant volume, can be determined from Tables

I and II since

¢V c
Sc (23)

kB Y

where 1 dP'Nk dP'
NkB V,x

= (d nT
S,x

The equation of state P(V,T,x) has not been tabulated but has been fitted to a

polynomial in x and rs for T = 6000 0K. (Pressures at other temperatures can be

found by using Table 1).

51.6 2 3
P - [1 + a(x)r + b(x)r + c(x)r ]Mbars (24)

r

- 11 -



- 12 -

a(x) = -0.654 - 0.200x + x(l - x)(-0.182 + 0.370x - 0.288x2 )

b(x) = 0.085 - 0.054x + x(l - x)(-0.086 - 0.530x + 0.573x2 )

c(x) = -0.008 + 0.028x + x(l - x)( 0.077 + 0.254x - 0.321x2 )

This interpolation formula is accurate to 0.3% for 0.6 4 rs 4 1.3. For x = 0

(metallic hydrogen) our results for P are in good agreement with previous workers.

For example, at r = 1.0 we obtained P= 21.8 Mbars whereas Hubbard and Slattery
5

S

obtained 22.0 Mbars. This agreement is not surprising, since the pressure is

determined mainly by Eeg and EM, terms that are common to both treatments. (For

(3) 2
example, E contributes only 0.35/r2 Mbar to P for hydrogen). We believe that

our equation of state is the best available for liquid metallic hydrogen and is

probably accurate to better than 1%. The accuracy for x j 0 is more difficult

to assess, since the perturbation expansion is much less valid for helium (as we

discuss in the final section.)

The parameter c (Table I) would be 1.0 for an ideal gas and 1.5 for a high

temperature Debye solid. The actual behavior is more complicated than either of

these limiting cases. For example, c is reduced by the quantum corrections at low

T but increased by the free energy of the electron gas at high T. The Monte Carlo

5
results are too incomplete for a detailed comparison. To give a sample comparison:

at x = 0, rs = 1.0; they obtained 1.49 at 42000 K, 1.42 at 63000 K, 1.32 at 10500 0K

and 1.16 at 315000 K. Our results for the same temperatures are 1.04, 1.15, 1.18

and 1.21 respectively.

The parameter y(Table II) would be 2/3 for an ideal monatomic gas and 0.5 for

a high temperature Debye solid(neglecting screening). The actual value usually lies

between these limiting cases. For comparison, the Monte Carlo result for x = 0,

r = 1.0 was y - 0.64, for 4 x 103 4 T 4 3 x 104 K.

The specific entropy (Table III) differs surprisingly little from the Monte

Carlo results. For example, at x = 0.143, p = 5 g/cm 3 Hubbard2 6 finds T = 23'400 0K
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for S = 8.4 kB /nucleus. Our results predict T = 20'500*K. (For a fully adiabatic,

homogeneous Jupiter, this would be roughly the central temperature of the planet.)

Our calculations enable us to assess accurately the "volume additivity"

approximation that has often been made. Let Q(x,P) be the volume per ion. We

can always write

[1 + 6(x,P)]Q(x,P) = xQ(1,P) + (1 - x)Q(O,P) (25)

where 6(x,P) is a measure of the deviation from volume additivity in the alloy.

Figure 1 shows that 6 is significantly non-zero, in contrast to Thomas-Fermi

theory where it is natural to assume 6 E 0. 2 7 This non-additivity is not attributable

to any particular term in the free energy. It is comparable to (but usually

somewhat larger than) the non-additivity observed in liquid alloys in the laboratory.2 8

This result indicates a small modification to models for giant planets. For

example, a model constructed using the exact equation of state and x = 0.1, would

require x - 0.12 if volume additivity were assumed. Correct allowance for non-

additivity slightly reduces the amount of helium required in giant planet models.



IV. Phase Separation

There are two ways of testing for incomplete miscibility in a fluid mixture

calculation. One way is to look for divergent behavior in the long wavelength

limit of a partial structure factor, corresponding to the onset of macroscopic

concentration fluctuations. This method has been applied by Stroud
2 9 to the alkali

metals with some success, but his mean field approach would predict complete misci-

bility in the H-He system. The more exact calculation described below indicates

that this must be a failure of the mean field approximation. (Our inability to

find divergent behavior indicates a lack of self-consistency in our calculation.

It is hoped that this inadequacy is serious only near the critical point.)

The second test is to evaluate the Gibbs energy G(P,T,x) and then determine

whether 2 G/Wx2 < 0 in any region of (P,T,x)-space. Such regions are unstable

towards phase separation. 30 This method has been used 2 2 to predict, with considerable

success, the miscibilities and phase separation curves for several alkali metal

mixtures.

Figure 2 shows the Gibbs energy of mixing, defined as

AG(P T,x) = G(P,T,x) - xG(P,T,I) - (1 - x)G(P,T,O) (26)

At low temperatures, the unstable region is easily discernable. Near the critical

temperature, a careful common tangent construction must be made (see the curve at

90000K, for example). Since AG is much smaller than G, it is clear that even small

errors can dramatically affect an estimate of Tc, the critical temperature. Never-

theless, there is little doubt that the unstable region exists for T 4 70000 K.

In Figure 3, we show the phase separation curves constructed from several plots

like Figure 2. (Not shown are the results at P = 200 Mbars, for which Tc  10'0000 K)

The regions near Tc are interpolations and may be inaccurate. Away from T = Tc , the

curves are likely to be accurate to about 4 20%. The results may also be incorrect

at low temperatures (T 4 20000 K) where solid phases may exist. We found no evidence

- 14 -
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in the calculations for the more complicated phase diagrams that are permitted by

the Gibbs phase rule.3 1

The results indicate that a H-He mixture of solar composition (x " 0.1)

separates into hydrogen-rich and helium-rich phases at temperatures less than about

80000 K and pressures in the range 4-200 Mbars. It is not surprising that this

phase transition did not clearly manifest itself in Hubbard's Monte Carlo calculations,

because of the small number of particles he used.32 The immiscibility is not

attributable to any particular contribution to F.

The effect of separation in a planet such as Jupiter is to retard the cooling

rate and evolution. This will be discussed elsewhere.



V. Discussion

We have assumed throughout that it is valid to consider the helium as fully

pressure-ionized, even at a few megabars pressure. There may be serious objections

to this.

It should be emnphasized, however , that the validity of our approach has nothing

to do with the pressure at which pure solid helium becomes metallic. We have

evaluated the band structure of face-centered cubic helium using plane waves as a

basis set for the electronic wavefunctions. We obtain a transition pressure of

33
70 Mbars, similar to the result of Trubitsyn33. However, a calculation of the

band gaps to third order in the electron-ion interaction is accurate even at 10 Mbar.

This is a more relevant criterion, since our calculation of F relies on the con-

vergence of a plane wave expansion and not on the existence of metallic conduction

in the helium fluid. We have also used the methods outlined in this paper to cal-

culate the free energy of molecular hydrogen at rs 4 1.7 to an accuracy comparable

to that achieved using semi-empirical H -H2 pair potentials. We mention this to

emphasize the power of the perturbation technique used.

Contrary to what has been stated in the literature,3 there is no good reason

for supposing that helium becomes less soluble at pressures lower than those

considered in this paper. Indeed, the screened interaction between a neutral

helium atom and a proton has large attractive region, which suggests miscibility.3

In contrast, the solubility of helium in alkali metals at near-zero pressure is

very low 3 5 because of the repulsive electron-helium pseudopotential36. As the

pressure increases and the wavelength of a conduction electron becomes comparable

to the size of a helium atom, the pseudopotential becomes less repulsive and the

solubility increases. It is not correct to compare the H-He system with any large

rs system (such as Na-He) that is accessible in the laboratory.

In this paper, we have shown how a judicious mixture of perturbation techniques

- 16 -
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enables us to evaluate the thermodynamics of a non-ideal system that was previously

thought to require Monte Carlo techniques. It is likely that other, similar systems

will yield to a comparable analysis. One candidate is the H2-He mixture that is

present at lower pressures (P 4 2 Mbars) in the giant planets.
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Appendix I Evaluation of Tijk(q ,q2 )

The calculation of E( 3 ) requires an approximation for

Ti k =( ' e (-qlr + (ql - +2)r + 2  )r ) (Al-1)

m,n,p

For simplicity, we consider a pure liquid so that the subscripts i,j,k can be

omitted. There are numerous papers in the theory of liquid metals 3 7,3 8 in which

T(q1', 2 ) is approximated by Tc(q1',q), where

Tc(q,& 2 ) = S(-ql)S( 1 1 - 2)S(2) (Al-2)

and S(q) is the usual liquid structure factor. This is often called the "geometric

37
approximation". As discussed by Ballentine and Heine , it treats clusters of

three atoms approximately, but is otherwise exact. What has apparently not been

pointed out before is that (Al-2) is identical to the well-known convolution

approximation in real space. This approximation states that3 9

g (3 r r) KS ( r ,r ( (2) r 2) - l)(g 2 r3) - l)

g(3 (2) (r2) r2'r(g (2) ( (2) r
x(g ( 2 )  3 - 1) + N (g( 2 )(r,) - l)(g(2) 2'4 - 1)

(3)

where g(2) and g(3) are the two-body and three-body correlation functions respectively,

and gK S  is the Kirkwood superposition approximation

(3) (2) (2) (2)
S= g (r1 r2 ) g (r r 3 ) (2' 3 )  (Al-4)

To prove the equivalence of (Al-2) and (Al-3) we note that by definition

l ei(-ql' m + (ql - -2'rn + q2"p)
N e -71 -m 2 n + )

m,n,p

- 18 -
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dr d is t e i(*ql r + (1 2 ) '-s + q2t) 3 (3) (Al-5)

where means m, n and p are all unequal in the summation. The proof is then

straightforward.

39
As discussed by Feenberg , the convolution approximation is an exact solution

(2) (3)
of the hierarchy equation that links g and g , whereas the superposition

approximation is not. Moreover, the convolution approximation is a natural conse-

40
quence of diagrammatic analyses, such as that made by Abe. However, it does not

necessarily satisfy the physical requirement, g(
3) > 0, whereas the superposition

approximation does. This could lead to serious errors for strongly repulsive

potentials.

Nevertheless, we have used the convolution approximation since the super-

position approximation is very cumbersome in Fourier space:

TKSQI'q2) = Tc(q,_ 2 ) - (S(-q1) - 1)(S(q - ) - )(S() - 1)

+ 1 J dk (S(k) - l)(S(k + 1) - l)(S(k+ q2) - 1) (Al-6)

(2r) N

We have made one test evaluation of E
(3 ) using TKS instead of Tc, for r = 0.3

and rs = 1.0 in pure hydrogen. The results agreed to within 10%, although TKS

and Tc often differed by more than 10%. This is also expected to be comparable to

the error that is incurred when either approximation is used, rather than the "true"

T(ql,q2 ) that would be determined by Monte Carlo or molecular dynamics techniques.

For larger Tr (closer packing), the error may be larger, since it is observed in

(3) (3) 41,42
machine calculations that gKS deviates more from the true g as increases. 4 1 4 2

The generalisation of (Al-2) to mixtures is straightforward (but not trivial).

The result is

ijk(q12) = (Sij-)1 - ij)(Sjk(h -q 12) - 6 jk)(Ski( 2 ) - ki)

+(Xkxi) (Sij( - ) - ij)(Sjk(q 2 - 6jk) + (xjxk) (Sij(- ) - 6ij
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x (Ski(q2)- 6ki ) + (xix ) 2(Sjk(- 2) - 6 jk)(Ski( -2) ki )

+ 6ij(xixk) Sik(2) + 6ik(xixj)jk 2)+ jk(xix)Sij (

- 2x.6..6 (Al-7)

where 6.. is the Kronecker delta.
11



Appendix II The Optimised Random Phase Approximation (ORPA)

The object of a liquid perturbation theory is to approximate the true pair

interaction by a very simple interaction for which the corresponding ionic con-

figuration is well known. The free energy is then expanded about the free energy

of the well understood reference system, in powers of the difference between the

actual and reference interactions. The ORPA was devised by Andersen and Chandler7,4 3

so that this perturbation expansion would rapidly converge. In briefly discussing

our application of this method, we restrict ourselves to a pure system.

eff
The first step is to approximate the real interaction v (r) by a trial

interaction v(r) given by

vT(r) = C r < R

eff
= v (r) r > R (A2-1)

where R is the variationally determined hard sphere diameter. The error in F

that 'is incurred"by this replacement is

NkBT eff
AF = B r CT(rFexp[-v ef(r)/kBT] dr (A2-2)

r<R

where CT(r) is the direct correlation function, evaluated by equation (A2-5) below.

eff
Since v (r) > > k T when r < R, this error is found to be negligible (it corresponds

to neglecting infrequent high-energy collisions between ions).

The trial interaction is then decomposed into a reference part and a pertur-

bation part.

v T(r) = Vo(r) + u(r)

v (r) = r< R

= 0 r>R

u(r) = -kBTc(r) r < R

Veff (r) r > R (A2-3)

- 21 -
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An exact calculation of F for this interaction must be independent of c(r), since

it is defined in the physically inaccessible region. However, the result of an

approximate calculation does depend on c(r). Andersen and Chandler showed that

AFin t , the change in the free energy from a hard sphere system, can be accurately

approximated by the lowest order term

(1) kBT I + NS(k)p(k) NS(k)p(k) dk (A2-4)
int 16T3N J k T k T

where c(k) = e u(r)dr, provided

6AF
intnt = 

0 , r < R (A2-5)
6c(r)

They also showed that c(r) ' CT(r) - Chs(r) for r < R, where Chs is the hard

sphere direct correlation function.

In our calculations lAFint < kBT, but is large enough to have a significant

effect on the entropy, as the Monte Carlo calculations by Ross4 4 would have pre-

dicted.

In Figure 4, a comparison is made of the pair correlations for ORPA, hard

spheres and Monte Carlo . The similarity of our ORPA result and the machine

simulation is very satisfactory.
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TABLE II y \d p/S

r rT
s s 0.0 0.1 0.2 0.4 0.6 0.8 1.0

1.2 4000 0.61 0.62 0.62 0.65 0.66 0.61 0.55

7000 0.61 0.62 0.66 0.67 0.68 0.61 0.56

12000 0.61 0.61 0.65 0.65 0.66 0.65 0.65

20000 0.63 0.64 0.64 0.65 0.66 0.65 0.65

30000 0.64 0.64 0.65 0.65 0.66 0.65 0.65

0.9 4000 0.58 0.58 0.59 0.58 0.55 0.53 0.53

7000 0.60 0.61 0.60 0.59 0.60 0.61 0.61

12000 0.63 0.63 0.62 0.62 0.62 0.63 0.62

20000 0.64 0.63 0.63 0.63 0.64 0.63 0.63

30000 0.64 0.63 0.63 0.63 0.64 0.63 0.63

0.7 4000 0.56 0.56 0.55 0.55 0.55 0.53 0.53

7000 0.59 0.60 0.59 0.59 0.59 0.56 0.56

12000 0.63 0.62 0.62 0.62 0.62 0.62 0.63

20000 0.63 0.64 0.63 0.63 0.63 0.63 0.64

30000 0.63 0.64 0.64 0.63 0.64 0.63 0.63
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TABLE III Entropy S (in k /nucleus) at rs = 0.9.

(For extrapolation to other densities,

use Table II.)

x

T(oK)
0.0 0.1 0.2 0.4 0.6 0.8 1.0

3500 4.3 4.8 5.15 5.6 5.9 6.0 5.75

6000 5.25 5.75 6.1 6.5 6.75 6.85 6.55

9000 6.0 6.55 6.95 7.45 7.75 7.85 7.55

12500 6.6 7.2 7.6 8.2 8.6 8.75 8.6

17500 7.25 7.85 8.3 8.9 9.4 9.6 9.5

25000 7.95 8.55 9.0 9.65 10.15 10.45 10.45

35000 8.55 9.2 9.65 10.35 10.85 11.25 11.25

- 28 -



Figure Captions

Figure 1 Extent of Volume Non-Additivity (equation (25)) at T = 10 4K and for

various pressures.

Figure 2 Gibbs energy of mixing AG, as a function of T and x at P = 8Mbars.

Figure 3 Phase separation curves for various pressures. The phase-excluded

region (miscibility gap) is below the curve in each case.

Figure 4 Pair correlation functions for Z = 1, r = 1.0 and T = 42000 K.

optimised hard spheres

ORPA

Monte Carlo (Hubbard5).
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